Your Blog

Included page "clone:hamilton69hoppe" does not exist (create it now)

Office / Indoor Air Quality – Investigating IAQ Complai - 17 Feb 2018 03:58

Tags:

The air quality of the indoor environment such as a non-industrial office environment can significantly affect the health, comfort, and productivity of building occupants.

Indoor air quality (IAQ) in the workplace, such an office environment, is the subject of much attention recently, and for good reason. Although serious irreversible health problems related to IAQ in non-industrial office environments are rare, the perception of endangered health is increasingly common among building occupants.

To date, the causes and consequences of poor IAQ are complex and not completely understood, but there are some basic factors that in many cases address IAQ concerns.

IAQ is a problem when the air contains dust and objectionable odours, chemical contaminants, dampness, mould or bacteria.

Poor indoor air quality can lead to a number of physical symptoms and complaints. The most common of these include:

Thermal discomfort: too hot or too cold

Headaches

Fatigue

Shortness of breath (eg. insufficient oxygen related to high carbon dioxide levels)

Sinus congestion

Coughs

Sneezing

Eye, nose, and throat irritation

Skin irritation

Dizziness

Nausea

https://www.sesa.com.au/asbestos-inspections-sydney.html

Skin irritation

These physical symptoms and complaints are often attributed to indoor air quality, however, it is important to note that indoor air quality is not always the cause. Other factors in the indoor environment such as noise, overcrowding, improper lighting, poor ergonomic conditions, and job stress can also lead to these symptoms and complaints. In many situations, a combination of factors is to blame.

An increased likelihood of complaints is usually associated with factors such as the installation of new furnishings, uncontrolled renovation activities, poor air circulation and air flow, persistent moisture and ongoing low relative humidity. Complaints may also increase when there is a stressful work environment, such as impending layoffs, a great deal of overtime, or an ongoing conflict among staff members and management.

A number of factors can affect the indoor air quality of a building or facility, including:

The physical layout of the building

The building’s heating, ventilation, and air conditioning (HVAC) system

The outdoor climate

The people who occupy the building

Contaminants emitted inside and entered from outside the building

Poor indoor air quality and indoor air contaminants affect some people more seriously, including:

People with allergies or asthma

People with respiratory disease

People whose immune system is suppressed as a result of disease or treatment

People who wear contact lenses

Indoor air contaminants can originate within a building or be drawn in from outdoors. These contaminants can lead to indoor air quality problems, even if the HVAC system is well designed, regularly maintained, and functioning to its optimum conditions.

Sources of contaminants inside the building environment may include:

Dust, dirt, or mould in the HVAC system (eg. cooling coils, ducts, registers)

Office equipment such as laser printers and copiers (eg. airborne particulates, ozone)

Personal activities such as smoking or cooking (eg. Volatile organic compounds, nicotine)

Housekeeping activities such as cleaning and dusting

Maintenance activities such as painting (eg. Volatile organic compounds)

Spills of water or other liquids

Special use areas such as print shops and laboratories

Industrial processes such as dry cleaning

Moisture affected building materials (eg. mould and bacteria)

Sources of contaminants from outside the building may include:

Vehicle exhaust

Pollen and dust (eg. long term build up if cleaning regime is inadequate)

Smoke

Unsanitary debris or dumpsters near the outdoor air intake

Depending on the complaint reported by building occupants, an indoor air quality investigation should include the following:

Interview with building occupants to identify potential causes such as identifiable odours, recent changes that may have caused the issue, water intrusion event, increased occupancy, cleaning regime, etc.

Assessment of the ventilation rate (generally when the indoor carbon dioxide levels are over 650 parts per million (ppm) above ambient outdoor levels)

Walkthrough inspection of the building and the ventilation system (filters, cooling coils, condensation trays, air ducts, etc.)

Sampling for airborne contaminants suspected to be present in concentrations associated with the reported complaints.

Documenting the complaint, the investigation, and any actions taken.

Occupant concerns regarding indoor air quality should be taken seriously and responded to as soon as possible. Initial information should be collected, checked and verified, preferably through interviews with occupants and a visual inspection:

Details about the specific complaint

Location(s) of the building where similar concerns about IAQ have been reported

Time of occurrence of the IAQ problem

When and where did it start and what has changed in the building just before the problem was first experienced

People affected and extent of the affected area(s)

Specific details on the health effects or discomfort occupants are experiencing

If the health effects stop soon after leaving the building, or over the weekend

If the symptoms have been diagnosed by a medical practitioner

If there are any identifiable practices inside or outside the building occurring at a time coinciding with the reported issues

If the air conditioning contractor or the building engineer evaluated the HVAC system or other conditions and the conclusions reached

Once the information above is gathered and analysed the walkthrough inspection by a specialist indoor air quality consultant should be undertaken to identify potential sources of contamination or unusual conditions. Generally, at this stage the IAQ consultant should be able to narrow the possibilities and developing air sampling strategy if required to confirm potential causes of the IAQ problem and decide on suitable solutions or if further investigation is required.

Generally, most IAQ issues can be resolved by addressing maintenance issues of the HVAC system (eg. air exchange rates, improved ventilation and air flow, filter change and disinfection of the internal surfaces of the air handling unit and the air ducts), HEPA vacuuming of the entire space, building repairs, addressing moisture issues, removing potential sources of contamination, implementing a new cleaning regime).

Under the Work Health & Safety Legislation, it is the duty of the person conducting a business or undertaking (PCBU) to provide a work environment that is free from risks to health and safety.

If you require assistance regarding the indoor air quality at your workplace please contact SESA on 02 8786 1808

First posted here https://www.sesa.com.au/14-indoor-air-quality/office-indoor-air-quality-investigating-iaq-complaints.html - Comments: 0

Office / Indoor Air Quality – Investigating IAQ Complai - 14 Feb 2018 16:04

Tags:

The air quality of the indoor environment such as a non-industrial office environment can significantly affect the health, comfort, and productivity of building occupants.

Indoor air quality (IAQ) in the workplace, such an office environment, is the subject of much attention recently, and for good reason. Although serious irreversible health problems related to IAQ in non-industrial office environments are rare, the perception of endangered health is increasingly common among building occupants.

To date, the causes and consequences of poor IAQ are complex and not completely understood, but there are some basic factors that in many cases address IAQ concerns.

IAQ is a problem when the air contains dust and objectionable odours, chemical contaminants, dampness, mould or bacteria.

Poor indoor air quality can lead to a number of physical symptoms and complaints. The most common of these include:

Thermal discomfort: too hot or too cold

Headaches

Fatigue

occupational hygiene Canberra

Shortness of breath (eg. insufficient oxygen related to high carbon dioxide levels)

Sinus congestion

Coughs

Sneezing

Eye, nose, and throat irritation

Skin irritation

Dizziness

Nausea

Skin irritation

These physical symptoms and complaints are often attributed to indoor air quality, however, it is important to note that indoor air quality is not always the cause. Other factors in the indoor environment such as noise, overcrowding, improper lighting, poor ergonomic conditions, and job stress can also lead to these symptoms and complaints. In many situations, a combination of factors is to blame.

An increased likelihood of complaints is usually associated with factors such as the installation of new furnishings, uncontrolled renovation activities, poor air circulation and air flow, persistent moisture and ongoing low relative humidity. Complaints may also increase when there is a stressful work environment, such as impending layoffs, a great deal of overtime, or an ongoing conflict among staff members and management.

A number of factors can affect the indoor air quality of a building or facility, including:

The physical layout of the building

The building’s heating, ventilation, and air conditioning (HVAC) system

The outdoor climate

The people who occupy the building

Contaminants emitted inside and entered from outside the building

Poor indoor air quality and indoor air contaminants affect some people more seriously, including:

People with allergies or asthma

People with respiratory disease

People whose immune system is suppressed as a result of disease or treatment

People who wear contact lenses

Indoor air contaminants can originate within a building or be drawn in from outdoors. These contaminants can lead to indoor air quality problems, even if the HVAC system is well designed, regularly maintained, and functioning to its optimum conditions.

Sources of contaminants inside the building environment may include:

Dust, dirt, or mould in the HVAC system (eg. cooling coils, ducts, registers)

Office equipment such as laser printers and copiers (eg. airborne particulates, ozone)

Personal activities such as smoking or cooking (eg. Volatile organic compounds, nicotine)

Housekeeping activities such as cleaning and dusting

Maintenance activities such as painting (eg. Volatile organic compounds)

Spills of water or other liquids

Special use areas such as print shops and laboratories

Industrial processes such as dry cleaning

Moisture affected building materials (eg. mould and bacteria)

Sources of contaminants from outside the building may include:

Vehicle exhaust

Pollen and dust (eg. long term build up if cleaning regime is inadequate)

Smoke

Unsanitary debris or dumpsters near the outdoor air intake

Depending on the complaint reported by building occupants, an indoor air quality investigation should include the following:

Interview with building occupants to identify potential causes such as identifiable odours, recent changes that may have caused the issue, water intrusion event, increased occupancy, cleaning regime, etc.

Assessment of the ventilation rate (generally when the indoor carbon dioxide levels are over 650 parts per million (ppm) above ambient outdoor levels)

Walkthrough inspection of the building and the ventilation system (filters, cooling coils, condensation trays, air ducts, etc.)

Sampling for airborne contaminants suspected to be present in concentrations associated with the reported complaints.

Documenting the complaint, the investigation, and any actions taken.

Occupant concerns regarding indoor air quality should be taken seriously and responded to as soon as possible. Initial information should be collected, checked and verified, preferably through interviews with occupants and a visual inspection:

Details about the specific complaint

Location(s) of the building where similar concerns about IAQ have been reported

Time of occurrence of the IAQ problem

When and where did it start and what has changed in the building just before the problem was first experienced

People affected and extent of the affected area(s)

Specific details on the health effects or discomfort occupants are experiencing

If the health effects stop soon after leaving the building, or over the weekend

If the symptoms have been diagnosed by a medical practitioner

If there are any identifiable practices inside or outside the building occurring at a time coinciding with the reported issues

If the air conditioning contractor or the building engineer evaluated the HVAC system or other conditions and the conclusions reached

Once the information above is gathered and analysed the walkthrough inspection by a specialist indoor air quality consultant should be undertaken to identify potential sources of contamination or unusual conditions. Generally, at this stage the IAQ consultant should be able to narrow the possibilities and developing air sampling strategy if required to confirm potential causes of the IAQ problem and decide on suitable solutions or if further investigation is required.

Generally, most IAQ issues can be resolved by addressing maintenance issues of the HVAC system (eg. air exchange rates, improved ventilation and air flow, filter change and disinfection of the internal surfaces of the air handling unit and the air ducts), HEPA vacuuming of the entire space, building repairs, addressing moisture issues, removing potential sources of contamination, implementing a new cleaning regime).

Under the Work Health & Safety Legislation, it is the duty of the person conducting a business or undertaking (PCBU) to provide a work environment that is free from risks to health and safety.

If you require assistance regarding the indoor air quality at your workplace please contact SESA on 02 8786 1808

First posted here https://www.sesa.com.au/14-indoor-air-quality/office-indoor-air-quality-investigating-iaq-complaints.html - Comments: 0

Office / Indoor Air Quality – Investigating IAQ Complai - 11 Feb 2018 09:27

Tags:

The air quality of the indoor environment such as a non-industrial office environment can significantly affect the health, comfort, and productivity of building occupants.

Indoor air quality (IAQ) in the workplace, such an office environment, is the subject of much attention recently, and for good reason. Although serious irreversible health problems related to IAQ in non-industrial office environments are rare, the perception of endangered health is increasingly common among building occupants.

To date, the causes and consequences of poor IAQ are complex and not completely understood, but there are some basic factors that in many cases address IAQ concerns.

IAQ is a problem when the air contains dust and objectionable odours, chemical contaminants, dampness, mould or bacteria.

Poor indoor air quality can lead to a number of physical symptoms and complaints. The most common of these include:

Thermal discomfort: too hot or too cold

Headaches

Safety & Environmental Services Australia

Fatigue

Shortness of breath (eg. insufficient oxygen related to high carbon dioxide levels)

Sinus congestion

Coughs

Sneezing

Eye, nose, and throat irritation

Skin irritation

Dizziness

Nausea

Skin irritation

These physical symptoms and complaints are often attributed to indoor air quality, however, it is important to note that indoor air quality is not always the cause. Other factors in the indoor environment such as noise, overcrowding, improper lighting, poor ergonomic conditions, and job stress can also lead to these symptoms and complaints. In many situations, a combination of factors is to blame.

An increased likelihood of complaints is usually associated with factors such as the installation of new furnishings, uncontrolled renovation activities, poor air circulation and air flow, persistent moisture and ongoing low relative humidity. Complaints may also increase when there is a stressful work environment, such as impending layoffs, a great deal of overtime, or an ongoing conflict among staff members and management.

A number of factors can affect the indoor air quality of a building or facility, including:

The physical layout of the building

The building’s heating, ventilation, and air conditioning (HVAC) system

The outdoor climate

The people who occupy the building

Contaminants emitted inside and entered from outside the building

Poor indoor air quality and indoor air contaminants affect some people more seriously, including:

People with allergies or asthma

People with respiratory disease

People whose immune system is suppressed as a result of disease or treatment

People who wear contact lenses

Indoor air contaminants can originate within a building or be drawn in from outdoors. These contaminants can lead to indoor air quality problems, even if the HVAC system is well designed, regularly maintained, and functioning to its optimum conditions.

Sources of contaminants inside the building environment may include:

Dust, dirt, or mould in the HVAC system (eg. cooling coils, ducts, registers)

Office equipment such as laser printers and copiers (eg. airborne particulates, ozone)

Personal activities such as smoking or cooking (eg. Volatile organic compounds, nicotine)

Housekeeping activities such as cleaning and dusting

Maintenance activities such as painting (eg. Volatile organic compounds)

Spills of water or other liquids

Special use areas such as print shops and laboratories

Industrial processes such as dry cleaning

Moisture affected building materials (eg. mould and bacteria)

Sources of contaminants from outside the building may include:

Vehicle exhaust

Pollen and dust (eg. long term build up if cleaning regime is inadequate)

Smoke

Unsanitary debris or dumpsters near the outdoor air intake

Depending on the complaint reported by building occupants, an indoor air quality investigation should include the following:

Interview with building occupants to identify potential causes such as identifiable odours, recent changes that may have caused the issue, water intrusion event, increased occupancy, cleaning regime, etc.

Assessment of the ventilation rate (generally when the indoor carbon dioxide levels are over 650 parts per million (ppm) above ambient outdoor levels)

Walkthrough inspection of the building and the ventilation system (filters, cooling coils, condensation trays, air ducts, etc.)

Sampling for airborne contaminants suspected to be present in concentrations associated with the reported complaints.

Documenting the complaint, the investigation, and any actions taken.

Occupant concerns regarding indoor air quality should be taken seriously and responded to as soon as possible. Initial information should be collected, checked and verified, preferably through interviews with occupants and a visual inspection:

Details about the specific complaint

Location(s) of the building where similar concerns about IAQ have been reported

Time of occurrence of the IAQ problem

When and where did it start and what has changed in the building just before the problem was first experienced

People affected and extent of the affected area(s)

Specific details on the health effects or discomfort occupants are experiencing

If the health effects stop soon after leaving the building, or over the weekend

If the symptoms have been diagnosed by a medical practitioner

If there are any identifiable practices inside or outside the building occurring at a time coinciding with the reported issues

If the air conditioning contractor or the building engineer evaluated the HVAC system or other conditions and the conclusions reached

Once the information above is gathered and analysed the walkthrough inspection by a specialist indoor air quality consultant should be undertaken to identify potential sources of contamination or unusual conditions. Generally, at this stage the IAQ consultant should be able to narrow the possibilities and developing air sampling strategy if required to confirm potential causes of the IAQ problem and decide on suitable solutions or if further investigation is required.

Generally, most IAQ issues can be resolved by addressing maintenance issues of the HVAC system (eg. air exchange rates, improved ventilation and air flow, filter change and disinfection of the internal surfaces of the air handling unit and the air ducts), HEPA vacuuming of the entire space, building repairs, addressing moisture issues, removing potential sources of contamination, implementing a new cleaning regime).

Under the Work Health & Safety Legislation, it is the duty of the person conducting a business or undertaking (PCBU) to provide a work environment that is free from risks to health and safety.

If you require assistance regarding the indoor air quality at your workplace please contact SESA on 02 8786 1808

First posted here https://www.sesa.com.au/14-indoor-air-quality/office-indoor-air-quality-investigating-iaq-complaints.html - Comments: 0

Office / Indoor Air Quality – Investigating IAQ Complai - 09 Feb 2018 20:19

Tags:

The air quality of the indoor environment such as a non-industrial office environment can significantly affect the health, comfort, and productivity of building occupants.

Indoor air quality (IAQ) in the workplace, such an office environment, is the subject of much attention recently, and for good reason. Although serious irreversible health problems related to IAQ in non-industrial office environments are rare, the perception of endangered health is increasingly common among building occupants.

To date, the causes and consequences of poor IAQ are complex and not completely understood, but there are some basic factors that in many cases address IAQ concerns.

IAQ is a problem when the air contains dust and objectionable odours, chemical contaminants, dampness, mould or bacteria.

Poor indoor air quality can lead to a number of physical symptoms and complaints. The most common of these include:

Thermal discomfort: too hot or too cold

Headaches

Fatigue

Shortness of breath (eg. insufficient oxygen related to high carbon dioxide levels)

Sinus congestion

Coughs

Sneezing

Eye, nose, and throat irritation

Skin irritation

Dizziness

Nausea

Skin irritation

Safety & Environmental Services Australia

These physical symptoms and complaints are often attributed to indoor air quality, however, it is important to note that indoor air quality is not always the cause. Other factors in the indoor environment such as noise, overcrowding, improper lighting, poor ergonomic conditions, and job stress can also lead to these symptoms and complaints. In many situations, a combination of factors is to blame.

An increased likelihood of complaints is usually associated with factors such as the installation of new furnishings, uncontrolled renovation activities, poor air circulation and air flow, persistent moisture and ongoing low relative humidity. Complaints may also increase when there is a stressful work environment, such as impending layoffs, a great deal of overtime, or an ongoing conflict among staff members and management.

A number of factors can affect the indoor air quality of a building or facility, including:

The physical layout of the building

The building’s heating, ventilation, and air conditioning (HVAC) system

The outdoor climate

The people who occupy the building

Contaminants emitted inside and entered from outside the building

Poor indoor air quality and indoor air contaminants affect some people more seriously, including:

People with allergies or asthma

People with respiratory disease

People whose immune system is suppressed as a result of disease or treatment

People who wear contact lenses

Indoor air contaminants can originate within a building or be drawn in from outdoors. These contaminants can lead to indoor air quality problems, even if the HVAC system is well designed, regularly maintained, and functioning to its optimum conditions.

Sources of contaminants inside the building environment may include:

Dust, dirt, or mould in the HVAC system (eg. cooling coils, ducts, registers)

Office equipment such as laser printers and copiers (eg. airborne particulates, ozone)

Personal activities such as smoking or cooking (eg. Volatile organic compounds, nicotine)

Housekeeping activities such as cleaning and dusting

Maintenance activities such as painting (eg. Volatile organic compounds)

Spills of water or other liquids

Special use areas such as print shops and laboratories

Industrial processes such as dry cleaning

Moisture affected building materials (eg. mould and bacteria)

Sources of contaminants from outside the building may include:

Vehicle exhaust

Pollen and dust (eg. long term build up if cleaning regime is inadequate)

Smoke

Unsanitary debris or dumpsters near the outdoor air intake

Depending on the complaint reported by building occupants, an indoor air quality investigation should include the following:

Interview with building occupants to identify potential causes such as identifiable odours, recent changes that may have caused the issue, water intrusion event, increased occupancy, cleaning regime, etc.

Assessment of the ventilation rate (generally when the indoor carbon dioxide levels are over 650 parts per million (ppm) above ambient outdoor levels)

Walkthrough inspection of the building and the ventilation system (filters, cooling coils, condensation trays, air ducts, etc.)

Sampling for airborne contaminants suspected to be present in concentrations associated with the reported complaints.

Documenting the complaint, the investigation, and any actions taken.

Occupant concerns regarding indoor air quality should be taken seriously and responded to as soon as possible. Initial information should be collected, checked and verified, preferably through interviews with occupants and a visual inspection:

Details about the specific complaint

Location(s) of the building where similar concerns about IAQ have been reported

Time of occurrence of the IAQ problem

When and where did it start and what has changed in the building just before the problem was first experienced

People affected and extent of the affected area(s)

Specific details on the health effects or discomfort occupants are experiencing

If the health effects stop soon after leaving the building, or over the weekend

If the symptoms have been diagnosed by a medical practitioner

If there are any identifiable practices inside or outside the building occurring at a time coinciding with the reported issues

If the air conditioning contractor or the building engineer evaluated the HVAC system or other conditions and the conclusions reached

Once the information above is gathered and analysed the walkthrough inspection by a specialist indoor air quality consultant should be undertaken to identify potential sources of contamination or unusual conditions. Generally, at this stage the IAQ consultant should be able to narrow the possibilities and developing air sampling strategy if required to confirm potential causes of the IAQ problem and decide on suitable solutions or if further investigation is required.

Generally, most IAQ issues can be resolved by addressing maintenance issues of the HVAC system (eg. air exchange rates, improved ventilation and air flow, filter change and disinfection of the internal surfaces of the air handling unit and the air ducts), HEPA vacuuming of the entire space, building repairs, addressing moisture issues, removing potential sources of contamination, implementing a new cleaning regime).

Under the Work Health & Safety Legislation, it is the duty of the person conducting a business or undertaking (PCBU) to provide a work environment that is free from risks to health and safety.

If you require assistance regarding the indoor air quality at your workplace please contact SESA on 02 8786 1808

First posted here https://www.sesa.com.au/14-indoor-air-quality/office-indoor-air-quality-investigating-iaq-complaints.html - Comments: 0

Asbestos Exposure & Risk of Developing Asbestos Related - 02 Feb 2018 09:14

Tags:

Asbestos is a naturally occurring rock forming mineral silicate in fibrous form belonging to the serpentine and amphibole groups. It occurs naturally in large deposits on every continent in the world. There are six types of naturally occurring asbestos fibres of which only three have been used commercially in Australia. These included the serpentine: Chrysotile (white asbestos); and the amphiboles: Crocidolite (blue asbestos) and Amosite (brown or grey asbestos). The other three non-commercially used amphiboles included Tremolite, Actinolite and Anthophyllite.

Asbestos has been used in the ancient world of the Egyptians, Greeks and Romans. It is believed that as early as 4000 BC, asbestos fibres were used for wicks in lamps and candles. Between 2000-3000 BC, embalmed bodies of Egyptian pharaohs were wrapped in asbestos cloth. The Greeks and Romans documented the harmful effects of asbestos fibres on those who mined the silken material from ancient stone quarries noting a “sickness of the lungs” in slaves who wove asbestos into cloth.

The commercial use of asbestos commenced in the late 1800s in Australia in four main industries including Mining and Milling; Building & Construction (for strengthening cement and plastics, for insulation, fireproofing and sound absorption); Ship Building (eg. insulation of boilers and steampipes) and the Automotive Industry (eg. vehicle brake shoes, gaskets and clutch pads).

There were over 3000 products (Asbestos Containing Materials or ACM) manufactured with asbestos fibres. The ACM fall into two broad categories: friable and non-friable (or bonded).

‘Friable’ is ACM that can be easily reduced to powder when crushed by hand, when dry. These materials can contain higher percentages of asbestos fibres and are easily or more likely to release airborne fibres into the environment with minimal disturbance. As such, they pose a greater risk to health. Friable materials must only be handled and removed by an asbestos removalist with Class A Asbestos Removal Licence. Examples of friable asbestos-containing materials include sprayed on fire retardants, insulation (eg. millboard, pipe insulation), sound proofing, the lining on some old domestic heaters, stoves and hot water systems and associated pipe lagging, the backing of sheet vinyl and linoleum floor coverings, thermal lagging, some vermiculite.

https://www.sesa.com.au/mould-testing-inspection-sydney-nsw-act.html

‘Non-friable’, or bonded ACM is used to refer to ACM in which the asbestos is firmly bound in the matrix of the material. These materials are unlikely to release measurable levels of airborne asbestos fibre into the environment if they are undisturbed. Therefore, they generally pose a lower risk to health. However, activities that may abrade the ACM such as drilling, grinding have the potential to release higher concentrations of airborne asbestos fibres into the environment. The non-friable ACM are mainly made up of asbestos fibres together with a bonding compound (such as cement), and typically contain up to 15 per cent asbestos. Non-friable ACM are solid, quite rigid and the asbestos fibres are tightly bound in the material. Non-friable ACM are the most common in domestic houses. They are commonly called ‘fibro’, ‘asbestos cement’ and ‘AC sheeting’. Examples of non-friable ACM include asbestos cement products (flat, profiled and corrugated sheeting used in walls, ceilings and roofs, moulded items such as downpipes) and vinyl floor tiles.

While asbestos is a hazardous material it can only pose a risk to health if the asbestos fibres become airborne in respirable size, are inhaled and lodge deep into the lungs (in the alveoli). Inhalation is the main route of entry to the body. Respirable fibres are fibres that are more likely to reach the small airways and alveolar region of the lung and are defined as having a length of more than five microns, and an aspect ratio (length/width) greater than 3:1.

Asbestos is classified according to the Globally Harmonised System of Classification and Labelling of Chemicals (GHS) as Carcinogenicity Category 1A (May cause cancer).

There are several asbestos related diseases that may result from the exposure to asbestos which depends on factors such as fibre type; size and shape of fibres; concentration of asbestos fibres in the inhaled air and period of time over which the person was exposed. The asbestos related diseases include:

Asbestosis

Pleural plaques

Malignant mesothelioma of the pleura and peritoneum

Lung cancer

Benign asbestos pleural effusion

Progressive pleural fibrosis (diffuse pleural thickening)

Transpulmonary bands (crow’s feet)

Rounded atelectasis

All asbestos related diseases have a latency period that is the period commencing from the time of the exposure to the asbestos fibres first occurred until symptoms of a disease show. This may range from 10 – 50 years for the asbestos related diseases.

Workplace exposures to asbestos fibres first occurred while mining asbestos, manufacturing asbestos containing products or using those products during the construction of buildings. Currently, the main source of exposure to asbestos fibres is during the maintenance, renovation or demolition of old buildings with asbestos containing materials.

Asbestos containing materials are subject to environmental weathering which causes them to breakdown and release asbestos fibres. Low levels of airborne asbestos fibres are encountered in the environment from the breakdown of asbestos products. Environmental weathering of asbestos cement sheets in roofing and wall cladding, disturbance of asbestos from a variety of building materials like insulation and asbestos release to air from clutches and brakes in cars and trucks results in asbestos fibres being dispersed in the environment.

According to Australian Government Department of Health website, we are all exposed to low levels of asbestos in the air we breathe every day. Ambient or background air usually contains between 10 and 200 asbestos fibres in every 1000 litres (or cubic metre) of air (equivalent to 0.01 to 0.20 fibres per litre of air). However, most people do not become ill from this exposure, because the levels of asbestos present in the environment are very low. Most people are also exposed to higher levels of asbestos at some time in their lives; for example, in their workplace, community or home. However, for most people, this kind of infrequent exposure is also unlikely to result in any ill effects.

Safe Work Australia states that “the typical environmental background in outdoor air is 0.0005 fibres/ml and 0.0002 fibres/ml in indoor air. The daily inhalation volume for an average adult is 22 m3 or 22000 litres. This means 5500 fibres are breathed/day by the average person (proportion of time spent indoors = 20 hours/day). Despite this the general population does not contract asbestos related disease in significant numbers. The background rate of mesothelioma is less than one per million per year. By comparison, the annual death rate for a 40 year old male in 2008 was 1.6 per thousand or 1600 per million. However, there is no absolutely safe level of exposure to asbestos fibres.

Most people who develop asbestos related diseases were workers who have worked on jobs where they frequently breathed in large amounts of asbestos fibres. As an example, construction workers using unsafe practices in the past may have frequently encountered asbestos fibre levels significantly higher than those levels found in the background. The current workplace exposure standard (time weighted average (TWA) over an eight-hour period) is 0.1 fibres/millilitre of air (100 fibres per litre which is between 500 and 10,000 times the background levels). In the past, workers in asbestos milling or mining often encountered fibre concentrations a million times higher than background levels. In 2011, 606 deaths were caused by mesothelioma and 125 deaths were caused by asbestosis in Australia.

Family members of exposed workers or those who lived close to active asbestos mines in the past are also at risk. A worker exposed to asbestos fibres or a home renovator can carry asbestos fibres on their clothing, boots, skin, hair and tools. Everyone should be alert to ensure they do not become exposed to these fibres.

A very small number of asbestos-related disease cases occur each year in people who have not worked with asbestos products. The low number of cases makes it difficult to determine the exact cause of the disease or the likely exposure event, but unsafe handling of asbestos materials in the home may have contributed to some of these cases.

The uncontrolled disturbance of asbestos containing materials must be avoided at any time to prevent the release of airborne asbestos and increase the risk of exposure to airborne asbestos fibres. The exposure to airborne asbestos fibres should be reduced to as low as reasonably practicable by managing asbestos containing materials in-situ and adopting safe work practices as required by the Work Health & Safety Regulations and Safe Work Australia Codes of Practice “How to Manage & Control Asbestos In the Workplace”: and “ How to Safely Remove Asbestos”.

If you require assistance in asbestos inspection, asbestos testing or asbestos assessment contact SESA on 02 8786 1808.

First posted here https://www.sesa.com.au/15-asbestos/asbestos-exposure-risk-of-developing-asbestos-related-disease.html - Comments: 0

Asbestos Exposure & Risk of Developing Asbestos Related - 02 Feb 2018 07:56

Tags:

Asbestos is a naturally occurring rock forming mineral silicate in fibrous form belonging to the serpentine and amphibole groups. It occurs naturally in large deposits on every continent in the world. There are six types of naturally occurring asbestos fibres of which only three have been used commercially in Australia. These included the serpentine: Chrysotile (white asbestos); and the amphiboles: Crocidolite (blue asbestos) and Amosite (brown or grey asbestos). The other three non-commercially used amphiboles included Tremolite, Actinolite and Anthophyllite.

Asbestos has been used in the ancient world of the Egyptians, Greeks and Romans. It is believed that as early as 4000 BC, asbestos fibres were used for wicks in lamps and candles. Between 2000-3000 BC, embalmed bodies of Egyptian pharaohs were wrapped in asbestos cloth. The Greeks and Romans documented the harmful effects of asbestos fibres on those who mined the silken material from ancient stone quarries noting a “sickness of the lungs” in slaves who wove asbestos into cloth.

The commercial use of asbestos commenced in the late 1800s in Australia in four main industries including Mining and Milling; Building & Construction (for strengthening cement and plastics, for insulation, fireproofing and sound absorption); Ship Building (eg. insulation of boilers and steampipes) and the Automotive Industry (eg. vehicle brake shoes, gaskets and clutch pads).

There were over 3000 products (Asbestos Containing Materials or ACM) manufactured with asbestos fibres. The ACM fall into two broad categories: friable and non-friable (or bonded).

‘Friable’ is ACM that can be easily reduced to powder when crushed by hand, when dry. These materials can contain higher percentages of asbestos fibres and are easily or more likely to release airborne fibres into the environment with minimal disturbance. As such, they pose a greater risk to health. Friable materials must only be handled and removed by an asbestos removalist with Class A Asbestos Removal Licence. Examples of friable asbestos-containing materials include sprayed on fire retardants, insulation (eg. millboard, pipe insulation), sound proofing, the lining on some old domestic heaters, stoves and hot water systems and associated pipe lagging, the backing of sheet vinyl and linoleum floor coverings, thermal lagging, some vermiculite.

‘Non-friable’, or bonded ACM is used to refer to ACM in which the asbestos is firmly bound in the matrix of the material. These materials are unlikely to release measurable levels of airborne asbestos fibre into the environment if they are undisturbed. Therefore, they generally pose a lower risk to health. However, activities that may abrade the ACM such as drilling, grinding have the potential to release higher concentrations of airborne asbestos fibres into the environment. The non-friable ACM are mainly made up of asbestos fibres together with a bonding compound (such as cement), and typically contain up to 15 per cent asbestos. Non-friable ACM are solid, quite rigid and the asbestos fibres are tightly bound in the material. Non-friable ACM are the most common in domestic houses. They are commonly called ‘fibro’, ‘asbestos cement’ and ‘AC sheeting’. Examples of non-friable ACM include asbestos cement products (flat, profiled and corrugated sheeting used in walls, ceilings and roofs, moulded items such as downpipes) and vinyl floor tiles.

While asbestos is a hazardous material it can only pose a risk to health if the asbestos fibres become airborne in respirable size, are inhaled and lodge deep into the lungs (in the alveoli). Inhalation is the main route of entry to the body. Respirable fibres are fibres that are more likely to reach the small airways and alveolar region of the lung and are defined as having a length of more than five microns, and an aspect ratio (length/width) greater than 3:1.

Asbestos is classified according to the Globally Harmonised System of Classification and Labelling of Chemicals (GHS) as Carcinogenicity Category 1A (May cause cancer).

There are several asbestos related diseases that may result from the exposure to asbestos which depends on factors such as fibre type; size and shape of fibres; concentration of asbestos fibres in the inhaled air and period of time over which the person was exposed. The asbestos related diseases include:

Asbestosis

Pleural plaques

Malignant mesothelioma of the pleura and peritoneum

Lung cancer

Benign asbestos pleural effusion

https://www.sesa.com.au/property-building-health-safety-ohs-inspections-sydney-nsw-act.html

Progressive pleural fibrosis (diffuse pleural thickening)

Transpulmonary bands (crow’s feet)

Rounded atelectasis

All asbestos related diseases have a latency period that is the period commencing from the time of the exposure to the asbestos fibres first occurred until symptoms of a disease show. This may range from 10 – 50 years for the asbestos related diseases.

Workplace exposures to asbestos fibres first occurred while mining asbestos, manufacturing asbestos containing products or using those products during the construction of buildings. Currently, the main source of exposure to asbestos fibres is during the maintenance, renovation or demolition of old buildings with asbestos containing materials.

Asbestos containing materials are subject to environmental weathering which causes them to breakdown and release asbestos fibres. Low levels of airborne asbestos fibres are encountered in the environment from the breakdown of asbestos products. Environmental weathering of asbestos cement sheets in roofing and wall cladding, disturbance of asbestos from a variety of building materials like insulation and asbestos release to air from clutches and brakes in cars and trucks results in asbestos fibres being dispersed in the environment.

According to Australian Government Department of Health website, we are all exposed to low levels of asbestos in the air we breathe every day. Ambient or background air usually contains between 10 and 200 asbestos fibres in every 1000 litres (or cubic metre) of air (equivalent to 0.01 to 0.20 fibres per litre of air). However, most people do not become ill from this exposure, because the levels of asbestos present in the environment are very low. Most people are also exposed to higher levels of asbestos at some time in their lives; for example, in their workplace, community or home. However, for most people, this kind of infrequent exposure is also unlikely to result in any ill effects.

Safe Work Australia states that “the typical environmental background in outdoor air is 0.0005 fibres/ml and 0.0002 fibres/ml in indoor air. The daily inhalation volume for an average adult is 22 m3 or 22000 litres. This means 5500 fibres are breathed/day by the average person (proportion of time spent indoors = 20 hours/day). Despite this the general population does not contract asbestos related disease in significant numbers. The background rate of mesothelioma is less than one per million per year. By comparison, the annual death rate for a 40 year old male in 2008 was 1.6 per thousand or 1600 per million. However, there is no absolutely safe level of exposure to asbestos fibres.

Most people who develop asbestos related diseases were workers who have worked on jobs where they frequently breathed in large amounts of asbestos fibres. As an example, construction workers using unsafe practices in the past may have frequently encountered asbestos fibre levels significantly higher than those levels found in the background. The current workplace exposure standard (time weighted average (TWA) over an eight-hour period) is 0.1 fibres/millilitre of air (100 fibres per litre which is between 500 and 10,000 times the background levels). In the past, workers in asbestos milling or mining often encountered fibre concentrations a million times higher than background levels. In 2011, 606 deaths were caused by mesothelioma and 125 deaths were caused by asbestosis in Australia.

Family members of exposed workers or those who lived close to active asbestos mines in the past are also at risk. A worker exposed to asbestos fibres or a home renovator can carry asbestos fibres on their clothing, boots, skin, hair and tools. Everyone should be alert to ensure they do not become exposed to these fibres.

A very small number of asbestos-related disease cases occur each year in people who have not worked with asbestos products. The low number of cases makes it difficult to determine the exact cause of the disease or the likely exposure event, but unsafe handling of asbestos materials in the home may have contributed to some of these cases.

The uncontrolled disturbance of asbestos containing materials must be avoided at any time to prevent the release of airborne asbestos and increase the risk of exposure to airborne asbestos fibres. The exposure to airborne asbestos fibres should be reduced to as low as reasonably practicable by managing asbestos containing materials in-situ and adopting safe work practices as required by the Work Health & Safety Regulations and Safe Work Australia Codes of Practice “How to Manage & Control Asbestos In the Workplace”: and “ How to Safely Remove Asbestos”.

If you require assistance in asbestos inspection, asbestos testing or asbestos assessment contact SESA on 02 8786 1808.

First posted here https://www.sesa.com.au/15-asbestos/asbestos-exposure-risk-of-developing-asbestos-related-disease.html - Comments: 0

Asbestos Exposure & Risk of Developing Asbestos Related - 02 Feb 2018 04:56

Tags:

Asbestos is a naturally occurring rock forming mineral silicate in fibrous form belonging to the serpentine and amphibole groups. It occurs naturally in large deposits on every continent in the world. There are six types of naturally occurring asbestos fibres of which only three have been used commercially in Australia. These included the serpentine: Chrysotile (white asbestos); and the amphiboles: Crocidolite (blue asbestos) and Amosite (brown or grey asbestos). The other three non-commercially used amphiboles included Tremolite, Actinolite and Anthophyllite.

Asbestos has been used in the ancient world of the Egyptians, Greeks and Romans. It is believed that as early as 4000 BC, asbestos fibres were used for wicks in lamps and candles. Between 2000-3000 BC, embalmed bodies of Egyptian pharaohs were wrapped in asbestos cloth. The Greeks and Romans documented the harmful effects of asbestos fibres on those who mined the silken material from ancient stone quarries noting a “sickness of the lungs” in slaves who wove asbestos into cloth.

The commercial use of asbestos commenced in the late 1800s in Australia in four main industries including Mining and Milling; Building & Construction (for strengthening cement and plastics, for insulation, fireproofing and sound absorption); Ship Building (eg. insulation of boilers and steampipes) and the Automotive Industry (eg. vehicle brake shoes, gaskets and clutch pads).

There were over 3000 products (Asbestos Containing Materials or ACM) manufactured with asbestos fibres. The ACM fall into two broad categories: friable and non-friable (or bonded).

‘Friable’ is ACM that can be easily reduced to powder when crushed by hand, when dry. These materials can contain higher percentages of asbestos fibres and are easily or more likely to release airborne fibres into the environment with minimal disturbance. As such, they pose a greater risk to health. Friable materials must only be handled and removed by an asbestos removalist with Class A Asbestos Removal Licence. Examples of friable asbestos-containing materials include sprayed on fire retardants, insulation (eg. millboard, pipe insulation), sound proofing, the lining on some old domestic heaters, stoves and hot water systems and associated pipe lagging, the backing of sheet vinyl and linoleum floor coverings, thermal lagging, some vermiculite.

‘Non-friable’, or bonded ACM is used to refer to ACM in which the asbestos is firmly bound in the matrix of the material. These materials are unlikely to release measurable levels of airborne asbestos fibre into the environment if they are undisturbed. Therefore, they generally pose a lower risk to health. However, activities that may abrade the ACM such as drilling, grinding have the potential to release higher concentrations of airborne asbestos fibres into the environment. The non-friable ACM are mainly made up of asbestos fibres together with a bonding compound (such as cement), and typically contain up to 15 per cent asbestos. Non-friable ACM are solid, quite rigid and the asbestos fibres are tightly bound in the material. Non-friable ACM are the most common in domestic houses. They are commonly called ‘fibro’, ‘asbestos cement’ and ‘AC sheeting’. Examples of non-friable ACM include asbestos cement products (flat, profiled and corrugated sheeting used in walls, ceilings and roofs, moulded items such as downpipes) and vinyl floor tiles.

While asbestos is a hazardous material it can only pose a risk to health if the asbestos fibres become airborne in respirable size, are inhaled and lodge deep into the lungs (in the alveoli). Inhalation is the main route of entry to the body. Respirable fibres are fibres that are more likely to reach the small airways and alveolar region of the lung and are defined as having a length of more than five microns, and an aspect ratio (length/width) greater than 3:1.

Asbestos is classified according to the Globally Harmonised System of Classification and Labelling of Chemicals (GHS) as Carcinogenicity Category 1A (May cause cancer).

There are several asbestos related diseases that may result from the exposure to asbestos which depends on factors such as fibre type; size and shape of fibres; concentration of asbestos fibres in the inhaled air and period of time over which the person was exposed. The asbestos related diseases include:

Asbestosis

Pleural plaques

Malignant mesothelioma of the pleura and peritoneum

Lung cancer

Benign asbestos pleural effusion

Progressive pleural fibrosis (diffuse pleural thickening)

Transpulmonary bands (crow’s feet)

Rounded atelectasis

All asbestos related diseases have a latency period that is the period commencing from the time of the exposure to the asbestos fibres first occurred until symptoms of a disease show. This may range from 10 – 50 years for the asbestos related diseases.

Workplace exposures to asbestos fibres first occurred while mining asbestos, manufacturing asbestos containing products or using those products during the construction of buildings. Currently, the main source of exposure to asbestos fibres is during the maintenance, renovation or demolition of old buildings with asbestos containing materials.

Asbestos containing materials are subject to environmental weathering which causes them to breakdown and release asbestos fibres. Low levels of airborne asbestos fibres are encountered in the environment from the breakdown of asbestos products. Environmental weathering of asbestos cement sheets in roofing and wall cladding, disturbance of asbestos from a variety of building materials like insulation and asbestos release to air from clutches and brakes in cars and trucks results in asbestos fibres being dispersed in the environment.

According to Australian Government Department of Health website, we are all exposed to low levels of asbestos in the air we breathe every day. Ambient or background air usually contains between 10 and 200 asbestos fibres in every 1000 litres (or cubic metre) of air (equivalent to 0.01 to 0.20 fibres per litre of air). However, most people do not become ill from this exposure, because the levels of asbestos present in the environment are very low. Most people are also exposed to higher levels of asbestos at some time in their lives; for example, in their workplace, community or home. However, for most people, this kind of infrequent exposure is also unlikely to result in any ill effects.

Safe Work Australia states that “the typical environmental background in outdoor air is 0.0005 fibres/ml and 0.0002 fibres/ml in indoor air. The daily inhalation volume for an average adult is 22 m3 or 22000 litres. This means 5500 fibres are breathed/day by the average person (proportion of time spent indoors = 20 hours/day). Despite this the general population does not contract asbestos related disease in significant numbers. The background rate of mesothelioma is less than one per million per year. By comparison, the annual death rate for a 40 year old male in 2008 was 1.6 per thousand or 1600 per million. However, there is no absolutely safe level of exposure to asbestos fibres.

Most people who develop asbestos related diseases were workers who have worked on jobs where they frequently breathed in large amounts of asbestos fibres. As an example, construction workers using unsafe practices in the past may have frequently encountered asbestos fibre levels significantly higher than those levels found in the background. The current workplace exposure standard (time weighted average (TWA) over an eight-hour period) is 0.1 fibres/millilitre of air (100 fibres per litre which is between 500 and 10,000 times the background levels). In the past, workers in asbestos milling or mining often encountered fibre concentrations a million times higher than background levels. In 2011, 606 deaths were caused by mesothelioma and 125 deaths were caused by asbestosis in Australia.

Family members of exposed workers or those who lived close to active asbestos mines in the past are also at risk. A worker exposed to asbestos fibres or a home renovator can carry asbestos fibres on their clothing, boots, skin, hair and tools. Everyone should be alert to ensure they do not become exposed to these fibres.

A very small number of asbestos-related disease cases occur each year in people who have not worked with asbestos products. The low number of cases makes it difficult to determine the exact cause of the disease or the likely exposure event, but unsafe handling of asbestos materials in the home may have contributed to some of these cases.

noise survey

The uncontrolled disturbance of asbestos containing materials must be avoided at any time to prevent the release of airborne asbestos and increase the risk of exposure to airborne asbestos fibres. The exposure to airborne asbestos fibres should be reduced to as low as reasonably practicable by managing asbestos containing materials in-situ and adopting safe work practices as required by the Work Health & Safety Regulations and Safe Work Australia Codes of Practice “How to Manage & Control Asbestos In the Workplace”: and “ How to Safely Remove Asbestos”.

If you require assistance in asbestos inspection, asbestos testing or asbestos assessment contact SESA on 02 8786 1808.

First posted here https://www.sesa.com.au/15-asbestos/asbestos-exposure-risk-of-developing-asbestos-related-disease.html - Comments: 0

Asbestos Exposure & Risk of Developing Asbestos Related - 02 Feb 2018 01:40

Tags:

Asbestos is a naturally occurring rock forming mineral silicate in fibrous form belonging to the serpentine and amphibole groups. It occurs naturally in large deposits on every continent in the world. There are six types of naturally occurring asbestos fibres of which only three have been used commercially in Australia. These included the serpentine: Chrysotile (white asbestos); and the amphiboles: Crocidolite (blue asbestos) and Amosite (brown or grey asbestos). The other three non-commercially used amphiboles included Tremolite, Actinolite and Anthophyllite.

Asbestos has been used in the ancient world of the Egyptians, Greeks and Romans. It is believed that as early as 4000 BC, asbestos fibres were used for wicks in lamps and candles. Between 2000-3000 BC, embalmed bodies of Egyptian pharaohs were wrapped in asbestos cloth. The Greeks and Romans documented the harmful effects of asbestos fibres on those who mined the silken material from ancient stone quarries noting a “sickness of the lungs” in slaves who wove asbestos into cloth.

The commercial use of asbestos commenced in the late 1800s in Australia in four main industries including Mining and Milling; Building & Construction (for strengthening cement and plastics, for insulation, fireproofing and sound absorption); Ship Building (eg. insulation of boilers and steampipes) and the Automotive Industry (eg. vehicle brake shoes, gaskets and clutch pads).

There were over 3000 products (Asbestos Containing Materials or ACM) manufactured with asbestos fibres. The ACM fall into two broad categories: friable and non-friable (or bonded).

‘Friable’ is ACM that can be easily reduced to powder when crushed by hand, when dry. These materials can contain higher percentages of asbestos fibres and are easily or more likely to release airborne fibres into the environment with minimal disturbance. As such, they pose a greater risk to health. Friable materials must only be handled and removed by an asbestos removalist with Class A Asbestos Removal Licence. Examples of friable asbestos-containing materials include sprayed on fire retardants, insulation (eg. millboard, pipe insulation), sound proofing, the lining on some old domestic heaters, stoves and hot water systems and associated pipe lagging, the backing of sheet vinyl and linoleum floor coverings, thermal lagging, some vermiculite.

‘Non-friable’, or bonded ACM is used to refer to ACM in which the asbestos is firmly bound in the matrix of the material. These materials are unlikely to release measurable levels of airborne asbestos fibre into the environment if they are undisturbed. Therefore, they generally pose a lower risk to health. However, activities that may abrade the ACM such as drilling, grinding have the potential to release higher concentrations of airborne asbestos fibres into the environment. The non-friable ACM are mainly made up of asbestos fibres together with a bonding compound (such as cement), and typically contain up to 15 per cent asbestos. Non-friable ACM are solid, quite rigid and the asbestos fibres are tightly bound in the material. Non-friable ACM are the most common in domestic houses. They are commonly called ‘fibro’, ‘asbestos cement’ and ‘AC sheeting’. Examples of non-friable ACM include asbestos cement products (flat, profiled and corrugated sheeting used in walls, ceilings and roofs, moulded items such as downpipes) and vinyl floor tiles.

While asbestos is a hazardous material it can only pose a risk to health if the asbestos fibres become airborne in respirable size, are inhaled and lodge deep into the lungs (in the alveoli). Inhalation is the main route of entry to the body. Respirable fibres are fibres that are more likely to reach the small airways and alveolar region of the lung and are defined as having a length of more than five microns, and an aspect ratio (length/width) greater than 3:1.

Asbestos is classified according to the Globally Harmonised System of Classification and Labelling of Chemicals (GHS) as Carcinogenicity Category 1A (May cause cancer).

There are several asbestos related diseases that may result from the exposure to asbestos which depends on factors such as fibre type; size and shape of fibres; concentration of asbestos fibres in the inhaled air and period of time over which the person was exposed. The asbestos related diseases include:

Asbestosis

https://www.sesa.com.au/indoor-air-quality-testing-consultants-occupational-hygienists-sydney-nsw-act.html

Pleural plaques

Malignant mesothelioma of the pleura and peritoneum

Lung cancer

Benign asbestos pleural effusion

Progressive pleural fibrosis (diffuse pleural thickening)

Transpulmonary bands (crow’s feet)

Rounded atelectasis

All asbestos related diseases have a latency period that is the period commencing from the time of the exposure to the asbestos fibres first occurred until symptoms of a disease show. This may range from 10 – 50 years for the asbestos related diseases.

Workplace exposures to asbestos fibres first occurred while mining asbestos, manufacturing asbestos containing products or using those products during the construction of buildings. Currently, the main source of exposure to asbestos fibres is during the maintenance, renovation or demolition of old buildings with asbestos containing materials.

Asbestos containing materials are subject to environmental weathering which causes them to breakdown and release asbestos fibres. Low levels of airborne asbestos fibres are encountered in the environment from the breakdown of asbestos products. Environmental weathering of asbestos cement sheets in roofing and wall cladding, disturbance of asbestos from a variety of building materials like insulation and asbestos release to air from clutches and brakes in cars and trucks results in asbestos fibres being dispersed in the environment.

According to Australian Government Department of Health website, we are all exposed to low levels of asbestos in the air we breathe every day. Ambient or background air usually contains between 10 and 200 asbestos fibres in every 1000 litres (or cubic metre) of air (equivalent to 0.01 to 0.20 fibres per litre of air). However, most people do not become ill from this exposure, because the levels of asbestos present in the environment are very low. Most people are also exposed to higher levels of asbestos at some time in their lives; for example, in their workplace, community or home. However, for most people, this kind of infrequent exposure is also unlikely to result in any ill effects.

Safe Work Australia states that “the typical environmental background in outdoor air is 0.0005 fibres/ml and 0.0002 fibres/ml in indoor air. The daily inhalation volume for an average adult is 22 m3 or 22000 litres. This means 5500 fibres are breathed/day by the average person (proportion of time spent indoors = 20 hours/day). Despite this the general population does not contract asbestos related disease in significant numbers. The background rate of mesothelioma is less than one per million per year. By comparison, the annual death rate for a 40 year old male in 2008 was 1.6 per thousand or 1600 per million. However, there is no absolutely safe level of exposure to asbestos fibres.

Most people who develop asbestos related diseases were workers who have worked on jobs where they frequently breathed in large amounts of asbestos fibres. As an example, construction workers using unsafe practices in the past may have frequently encountered asbestos fibre levels significantly higher than those levels found in the background. The current workplace exposure standard (time weighted average (TWA) over an eight-hour period) is 0.1 fibres/millilitre of air (100 fibres per litre which is between 500 and 10,000 times the background levels). In the past, workers in asbestos milling or mining often encountered fibre concentrations a million times higher than background levels. In 2011, 606 deaths were caused by mesothelioma and 125 deaths were caused by asbestosis in Australia.

Family members of exposed workers or those who lived close to active asbestos mines in the past are also at risk. A worker exposed to asbestos fibres or a home renovator can carry asbestos fibres on their clothing, boots, skin, hair and tools. Everyone should be alert to ensure they do not become exposed to these fibres.

A very small number of asbestos-related disease cases occur each year in people who have not worked with asbestos products. The low number of cases makes it difficult to determine the exact cause of the disease or the likely exposure event, but unsafe handling of asbestos materials in the home may have contributed to some of these cases.

The uncontrolled disturbance of asbestos containing materials must be avoided at any time to prevent the release of airborne asbestos and increase the risk of exposure to airborne asbestos fibres. The exposure to airborne asbestos fibres should be reduced to as low as reasonably practicable by managing asbestos containing materials in-situ and adopting safe work practices as required by the Work Health & Safety Regulations and Safe Work Australia Codes of Practice “How to Manage & Control Asbestos In the Workplace”: and “ How to Safely Remove Asbestos”.

If you require assistance in asbestos inspection, asbestos testing or asbestos assessment contact SESA on 02 8786 1808.

First posted here https://www.sesa.com.au/15-asbestos/asbestos-exposure-risk-of-developing-asbestos-related-disease.html - Comments: 0

Asbestos Exposure & Risk of Developing Asbestos Related - 24 Jan 2018 13:45

Tags:

Asbestos is a naturally occurring rock forming mineral silicate in fibrous form belonging to the serpentine and amphibole groups. It occurs naturally in large deposits on every continent in the world. There are six types of naturally occurring asbestos fibres of which only three have been used commercially in Australia. These included the serpentine: Chrysotile (white asbestos); and the amphiboles: Crocidolite (blue asbestos) and Amosite (brown or grey asbestos). The other three non-commercially used amphiboles included Tremolite, Actinolite and Anthophyllite.

Asbestos has been used in the ancient world of the Egyptians, Greeks and Romans. It is believed that as early as 4000 BC, asbestos fibres were used for wicks in lamps and candles. Between 2000-3000 BC, embalmed bodies of Egyptian pharaohs were wrapped in asbestos cloth. The Greeks and Romans documented the harmful effects of asbestos fibres on those who mined the silken material from ancient stone quarries noting a “sickness of the lungs” in slaves who wove asbestos into cloth.

The commercial use of asbestos commenced in the late 1800s in Australia in four main industries including Mining and Milling; Building & Construction (for strengthening cement and plastics, for insulation, fireproofing and sound absorption); Ship Building (eg. insulation of boilers and steampipes) and the Automotive Industry (eg. vehicle brake shoes, gaskets and clutch pads).

There were over 3000 products (Asbestos Containing Materials or ACM) manufactured with asbestos fibres. The ACM fall into two broad categories: friable and non-friable (or bonded).

‘Friable’ is ACM that can be easily reduced to powder when crushed by hand, when dry. These materials can contain higher percentages of asbestos fibres and are easily or more likely to release airborne fibres into the environment with minimal disturbance. As such, they pose a greater risk to health. Friable materials must only be handled and removed by an asbestos removalist with Class A Asbestos Removal Licence. Examples of friable asbestos-containing materials include sprayed on fire retardants, insulation (eg. millboard, pipe insulation), sound proofing, the lining on some old domestic heaters, stoves and hot water systems and associated pipe lagging, the backing of sheet vinyl and linoleum floor coverings, thermal lagging, some vermiculite.

‘Non-friable’, or bonded ACM is used to refer to ACM in which the asbestos is firmly bound in the matrix of the material. These materials are unlikely to release measurable levels of airborne asbestos fibre into the environment if they are undisturbed. Therefore, they generally pose a lower risk to health. However, activities that may abrade the ACM such as drilling, grinding have the potential to release higher concentrations of airborne asbestos fibres into the environment. The non-friable ACM are mainly made up of asbestos fibres together with a bonding compound (such as cement), and typically contain up to 15 per cent asbestos. Non-friable ACM are solid, quite rigid and the asbestos fibres are tightly bound in the material. Non-friable ACM are the most common in domestic houses. They are commonly called ‘fibro’, ‘asbestos cement’ and ‘AC sheeting’. Examples of non-friable ACM include asbestos cement products (flat, profiled and corrugated sheeting used in walls, ceilings and roofs, moulded items such as downpipes) and vinyl floor tiles.

While asbestos is a hazardous material it can only pose a risk to health if the asbestos fibres become airborne in respirable size, are inhaled and lodge deep into the lungs (in the alveoli). Inhalation is the main route of entry to the body. Respirable fibres are fibres that are more likely to reach the small airways and alveolar region of the lung and are defined as having a length of more than five microns, and an aspect ratio (length/width) greater than 3:1.

Asbestos is classified according to the Globally Harmonised System of Classification and Labelling of Chemicals (GHS) as Carcinogenicity Category 1A (May cause cancer).

There are several asbestos related diseases that may result from the exposure to asbestos which depends on factors such as fibre type; size and shape of fibres; concentration of asbestos fibres in the inhaled air and period of time over which the person was exposed. The asbestos related diseases include:

Asbestosis

Pleural plaques

Malignant mesothelioma of the pleura and peritoneum

Lung cancer

Benign asbestos pleural effusion

Progressive pleural fibrosis (diffuse pleural thickening)

Transpulmonary bands (crow’s feet)

Rounded atelectasis

All asbestos related diseases have a latency period that is the period commencing from the time of the exposure to the asbestos fibres first occurred until symptoms of a disease show. This may range from 10 – 50 years for the asbestos related diseases.

https://www.sesa.com.au/lead-paint-dust-fumes-inspections-testing-sampling-assessments.html

Workplace exposures to asbestos fibres first occurred while mining asbestos, manufacturing asbestos containing products or using those products during the construction of buildings. Currently, the main source of exposure to asbestos fibres is during the maintenance, renovation or demolition of old buildings with asbestos containing materials.

Asbestos containing materials are subject to environmental weathering which causes them to breakdown and release asbestos fibres. Low levels of airborne asbestos fibres are encountered in the environment from the breakdown of asbestos products. Environmental weathering of asbestos cement sheets in roofing and wall cladding, disturbance of asbestos from a variety of building materials like insulation and asbestos release to air from clutches and brakes in cars and trucks results in asbestos fibres being dispersed in the environment.

According to Australian Government Department of Health website, we are all exposed to low levels of asbestos in the air we breathe every day. Ambient or background air usually contains between 10 and 200 asbestos fibres in every 1000 litres (or cubic metre) of air (equivalent to 0.01 to 0.20 fibres per litre of air). However, most people do not become ill from this exposure, because the levels of asbestos present in the environment are very low. Most people are also exposed to higher levels of asbestos at some time in their lives; for example, in their workplace, community or home. However, for most people, this kind of infrequent exposure is also unlikely to result in any ill effects.

Safe Work Australia states that “the typical environmental background in outdoor air is 0.0005 fibres/ml and 0.0002 fibres/ml in indoor air. The daily inhalation volume for an average adult is 22 m3 or 22000 litres. This means 5500 fibres are breathed/day by the average person (proportion of time spent indoors = 20 hours/day). Despite this the general population does not contract asbestos related disease in significant numbers. The background rate of mesothelioma is less than one per million per year. By comparison, the annual death rate for a 40 year old male in 2008 was 1.6 per thousand or 1600 per million. However, there is no absolutely safe level of exposure to asbestos fibres.

Most people who develop asbestos related diseases were workers who have worked on jobs where they frequently breathed in large amounts of asbestos fibres. As an example, construction workers using unsafe practices in the past may have frequently encountered asbestos fibre levels significantly higher than those levels found in the background. The current workplace exposure standard (time weighted average (TWA) over an eight-hour period) is 0.1 fibres/millilitre of air (100 fibres per litre which is between 500 and 10,000 times the background levels). In the past, workers in asbestos milling or mining often encountered fibre concentrations a million times higher than background levels. In 2011, 606 deaths were caused by mesothelioma and 125 deaths were caused by asbestosis in Australia.

Family members of exposed workers or those who lived close to active asbestos mines in the past are also at risk. A worker exposed to asbestos fibres or a home renovator can carry asbestos fibres on their clothing, boots, skin, hair and tools. Everyone should be alert to ensure they do not become exposed to these fibres.

A very small number of asbestos-related disease cases occur each year in people who have not worked with asbestos products. The low number of cases makes it difficult to determine the exact cause of the disease or the likely exposure event, but unsafe handling of asbestos materials in the home may have contributed to some of these cases.

The uncontrolled disturbance of asbestos containing materials must be avoided at any time to prevent the release of airborne asbestos and increase the risk of exposure to airborne asbestos fibres. The exposure to airborne asbestos fibres should be reduced to as low as reasonably practicable by managing asbestos containing materials in-situ and adopting safe work practices as required by the Work Health & Safety Regulations and Safe Work Australia Codes of Practice “How to Manage & Control Asbestos In the Workplace”: and “ How to Safely Remove Asbestos”.

If you require assistance in asbestos inspection, asbestos testing or asbestos assessment contact SESA on 02 8786 1808.

First posted here https://www.sesa.com.au/15-asbestos/asbestos-exposure-risk-of-developing-asbestos-related-disease.html - Comments: 0

Exchanging Vows: Wedding Planning Tips And Tricks - 22 Jan 2018 00:41

Tags:

Many cultures and religions have their own wedding traditions. Some couples let doves go after they say their vows, while others jump over a broom. The traditions seem countless. You may want to incorporate one of these traditions into your own wedding ceremony, or maybe come up with one of your own. This article will give you some ideas for different wedding traditions.

When you are giving your speech at the wedding, understand that it is okay to show emotions. The stories that you tell will most likely be very emotional, as everyone at the wedding will be expecting you to shed some tears. Let it all out, to show how much each story means to you.

When planning your wedding, consider the flowers that you want to use. Some weddings have color themes and flowers can become costly when you are trying to match colors. Flower color depends on the season and if you are looking for a certain color of flower during the off season, it will be more expensive.

Get your nails done when you get your hair done for your wedding to give you the overall pampering that you deserve on your big day. It isn't very expensive, but the foot bath and hand massage will help calm your nerves and leave you looking beautiful and feeling great!

If you cannot decide on colors for your wedding, consider using the colors from nature. Many weddings have multiple colors, not just one or two. You could experiment with yellow, greens, browns, reds, and pinks. You could, also, plan your wedding colors around the season. If you are having a fall wedding, use fall colors to influence you.

Make sure that after your wedding you send thank-you notes to all of your guests for not only coming to your wedding but for the gifts that they gave to you. This will make them feel special and show that you appreciated them using their time to share your special moment.

When trying to pare down the guest list, consider who is paying for the wedding, and then allocate them more seats. If the bride's father is footing the bill, then her side of the family should be permitted to attend. If the couple is paying for the wedding themselves, then they should split the number of attendees in half for each side.

Find out before your wedding ceremony when and where you are permitted to take photographs. Some venues won't permit flash photography at all, while some officiants don't want anyone taking photos while they are conducting the ceremony. If you find out the rules ahead of time you can plan out the shots you are allowed to take beforehand.

Which is more important, having a wedding in the small venue you love or having a ton of people in attendance? It can be a hard decision to make, but remember that it is your day and that no one will be so deeply hurt by not being able to come that they would want to ruin it for you.

Keep your toasts short and to the point. Long, rambling stories about that time you were in college and went on a long road trip together start out cute but end up in yawns when they take too long. If you have a funny story to share, make sure that it is less than three minutes long.

Keep your toasts short and to the point. Long, rambling stories about that time you were in college and went on a long road trip together start out cute but end up in yawns when they take too long. If you have a funny story to share, make sure that it is less than three minutes long.

Unless you are throwing a gala event, keep the guest list realistic and keep it small. Invite the most important people in your life first; family and close friends. Do not branch out much further than this and it will keep your wedding intimate and make sure that you have time to socialize with everyone you invite. Too many guests will keep your running trying to acknowledge them all.

Tips For Enjoying That Perfect Wedding You've Always Wanted

Ensure that everyone coming to your destination wedding, knows exactly what to do and where to go when they get off the plane. Provide them with detailed instructions on how to get to the hotel and then, how to get from the hotel to your wedding location. They should also have help in heading home.

You just learned a lot of information about weddings and how you can be more successful when planning a wedding. If you apply the tips you just read about while planning your wedding, you'll have a memorable and easy time when your special day arrives. - Comments: 0

page 1 of 3123next »

Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-ShareAlike 3.0 License